Wnt10b inhibits development of white and brown adipose tissues.
نویسندگان
چکیده
Wnt is a family of secreted signaling proteins that regulate diverse developmental processes. Activation of canonical Wnt signaling by Wnt10b inhibits differentiation of preadipocytes in vitro. To determine whether Wnt signaling blocks adipogenesis in vivo, we created transgenic mice in which Wnt10b is expressed from the FABP4 promoter. Expression of Wnt10b in adipose impairs development of this tissue throughout the body, with a decline of approximately 50% in total body fat and a reduction of approximately 60% in weight of epididymal and perirenal depots. FABP4-Wnt10b mice resist accumulation of adipose tissue when fed a high fat diet. Furthermore, transgenic mice are more glucose-tolerant and insulin-sensitive than wild type mice. Expression of Wnt10b from the FABP4 promoter also blocks development of brown adipose tissue. Interscapular tissue of FABP4-Wnt10b mice has the visual appearance of white adipose tissue but expresses neither brown (e.g. uncoupling protein 1) nor white adipocyte markers. Transgenic mice are unable to maintain a core body temperature when placed in a cold environment, providing further evidence that Wnt10b inhibits development of brown adipose tissue. Although food intake is not altered in FABP4-Wnt10b mice, oxygen consumption is decreased. Thus, FABP4-Wnt10b mice on a chow diet gain more weight than controls, largely because of an increase in weight of skin. In summary, inhibition by Wnt10b of white and brown adipose tissue development results in lean mice without lipodystrophic diabetes.
منابع مشابه
Regulation of osteoblastogenesis and bone mass by Wnt10b.
Wnts comprise a family of secreted signaling proteins that regulate diverse developmental processes. Activation of Wnt signaling by Wnt10b inhibits differentiation of preadipocytes and blocks adipose tissue development; however, the effect of Wnt10b on other mesenchymal lineages has not been defined. To explore the physiological role of Wnt signaling in bone development, we analyzed FABP4-Wnt10...
متن کاملWnt10b inhibits obesity in ob/ob and agouti mice.
The Wnt family of secreted signaling molecules has profound effects on diverse developmental processes, including the fate of mesenchymal progenitors. While activation of Wnt signaling blocks adipogenesis, inhibition of endogenous Wnt/beta-catenin signaling by Wnt10b promotes spontaneous preadipocyte differentiation. Transgenic mice with expression of Wnt10b from the FABP4 promoter (FABP4-Wnt10...
متن کاملIncreased Circulating Adiponectin in Response to Thiazolidinediones: Investigating the Role of Bone Marrow Adipose Tissue
BACKGROUND Bone marrow adipose tissue (MAT) contributes to increased circulating adiponectin, an insulin-sensitizing hormone, during caloric restriction (CR), but whether this occurs in other contexts remains unknown. The antidiabetic thiazolidinediones (TZDs) also promote MAT expansion and hyperadiponectinemia, even without increasing adiponectin expression in white adipose tissue (WAT). OBJ...
متن کاملTranscription regulators and hormones involved in the development of brown fat and white fat browning. Transcriptional and hormonal control of brown/beige fat development.
The high prevalence of obesity and related metabolic complications has inspired research on adipose tissues. Three kinds of adipose tissues are identified in mammals: brown adipose tissue (BAT), beige or brite adipose tissue and white adipose tissue (WAT). Beige adipocytes share some characteristics with brown adipocytes such as the expression of UCP1. Beige adipocytes can be activated by envir...
متن کاملEmergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype.
In mammals, two types of adipose tissue are present, brown and white. They develop sequentially, as brown fat occurs during late gestation whereas white fat grows mainly after birth. However, both tissues have been shown to have great plasticity. Thus an apparent transformation of brown fat into white fat takes place during post-natal development. This observation raises questions about a possi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 34 شماره
صفحات -
تاریخ انتشار 2004